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1 The cointegrated VAR model of Section 5

in the paper

With reference to the discussion in Section 5 of the paper, the VAR(5), which
is the starting point for our econometric analysis, may be reparameterized in
the following way:

(1) ∆xt = Πyt−1 +
4∑

i=1

Γi∆xt−i +
4∑

i=0

Ψi∆zt−i + ΦGt + εt,

where εt ∼ N(0,Σ), xt is a 3× 1 vector comprising the endogenous variables
ph,d and yh. y = (x′, z′)′ is a (3 + 3) × 1 vector where z is a 3 × 1 vector
composed of the weakly exogenous variables R, th and h. Gt is a vector of
deterministic terms (constant, linear trend and centered seasonal dummies),
and Π, Γi, and Ψi and Φ are the corresponding coefficient matrices.

In the analysis in Section 5 of our paper, we follow the suggestion of
Harbo et al. (1998) for partial systems and restrict a deterministic trend to
enter the cointegration space. This implies that equation (1) can be written
as:
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(2) ∆xt = Π̃ỹt−1 +
4∑

i=1

Γi∆xt−i +
4∑

i=0

Ψi∆zt−i + Φ̃G̃t + εt

where Π̃ = (Π, δ) and ỹ = (y′, t)′ with δ representing the vector of trend
coefficients. Further, G̃t comprises only a constant and centered seasonal
dummies with the corresponding coefficient matrix being given as Φ̃.

The trace test for the order of cointegration (Johansen, 1988) can be used
to determine the rank of the matrix Π̃, which corresponds to the number of
independent linear combinations between the variables that are stationary.
We follow Johansen (1988) and define Π̃ = αβ′, where β is a (p+ q+ 1)× r
matrix and α is a p × r matrix corresponding to the long run coefficients
and loading factors respectively. The rank of the Π̃ matrix is denoted by r,
while p refers to number of endogenous variables and q + 1 is the number of
exogenous variables (including the deterministic trend, which is restricted to
lie in the cointegration space).

Given that the rank of Π̃ is two (as we find in the paper), with three
endogenous and three exogenous variables, the cointegrating part of equation
(1) takes on the following form:

(3)

αβ′y =

 α1,ph α1,d

α2,ph α2,d

α3,ph α3,d

( βph,1 βd,1 βyh,1 βR,1 βth,1 βh,1 βt,1
βph,2 βd,2 βyh,2 βR,2 βth,2 βh,2 βt,2

)


ph
d
yh
R
th
h
t


Exact identification can be achieved by imposing two restrictions in each

vector. We start by normalizing on real housing prices in the first vector
(βph,1 = 1) and real household debt in the other (βd,2 = 1). In addition, it is
assumed that the housing turnover has no direct effect on real housing prices
(βth,1 = 0). Tests for overidentifying restrictions are reported in the paper.
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2 The Dynamic model of Section 6 in the pa-

per

To derive the simultaneous equation system that forms the basis for the
econometric analysis in Section 6 of the paper, we have premultiplied the
reduced form representation in equation (2) by the (non-zero) contempora-
neous feedback matrix, B:

(4) B∆xt = BΠ̃ỹt−1 +
4∑

i=1

BΓi∆xt−i +
4∑

i=0

BΨi∆zt−i + Bεt

where we now define BΠ̃ = Bαβ′ = α∗β′,BΓi = Γ∗i ,BΨi = Ψ∗i ,Bεt = εt.
In the interest of expositional simplicity, we have left out the determinis-
tic terms, G̃t, from the equation. The new error term will also be IIN
with zero mean and variance-covariance matrix given by: Ω = E(εtε

′
t) =

BE(εtε
′
t)B

′ = BΣB′.
As the income variable is found to be weakly exogenous, we can write

the above system as a conditional system for housing prices and credit and a
marginal model for income (see e.g Johansen (1992)). Since the focus of our
paper is the interaction between housing prices and credit, we can, without
loss of generality, abstract from modeling the marginal model for income. In
that case, the conditional SVECM takes the following form:

∆pht − b12∆dt =
4∑

i=1

Γ∗1i∆x∗t−i +
4∑

i=0

Ψ∗1i∆z∗t−i +
4∑

i=1

Ψ̃1,Ri∆Rt−i(5)

+ α∗1,phECM
ph
t−1 + α∗1,dECM

d
t−1 + εph,t

−b21∆pht + ∆dt =
4∑

i=1

Γ∗2i∆x∗t−i +
4∑

i=0

Ψ∗2i∆z∗t−i +
4∑

i=1

Ψ̃2,Ri∆Rt−i(6)

+ α∗2,phECM
ph
t−1 + α∗2,dECM

d
t−1 + εd,t

where we have normalized such that the contemporaneous feedback matrix,
B, has ones along the main diagonal. x∗ now consists of the two remaining
endogenous variables, while z∗ still represents a vector of the current and
lagged exogenous variables in the system (including the income variable) as

well as a constant and centered seasonal dummies. Γ∗ji, Ψ∗ji and Ψ̃j,Ri (j=1, 2)
are the short run coefficients, where Γ∗i = (Γ∗1i,Γ

∗
2i) and Ψ∗i = (Ψ∗1i,Ψ

∗
2i).

Since the housing stock adjusts slowly, it is assumed to be fixed in the short
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run and is not part of the vector z∗. Note also that we have excluded the
contemporaneous value of the change in real after-tax interest rate, ∆Rt,
from both equations to form our general unrestricted model. However, we
supplement the short run dynamics by including an expectations variable, E,
which measures households expectations about future developments in their
personal economy and the macroeconomy. Hence, z∗= (th, E, yh). This is
the system that constitutes the general unrestricted model. In Section 6 of
the paper, we have reduced the dimensionality of this system by going general
to specific. The final model (preferred specification) is reported in Table 5
of the paper.
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3 Equation-by-equation modelling

Adopting a single equation approach one would take the system represented
by equation (5) and (6) as a starting point. This approach precludes any
formal treatment of identification, but may possibly give reasonable results
if the simultaneity bias is not large. We have used the automated multipath
search algorithm Autometrics (see Doornik (2009) and Doornik and Hendry
(2009a)) to reduce the dimensionality of each equation. An obvious advan-
tage with this algorithm is that it is very little path dependent as it does a
multipath search. However, the benefit from this might be outweighed by the
fact that it does not allow us to take care of the simultaneity from the onset
by doing a full fledged system analysis at each step in the reduction process.
The results from this single equation general to specific approach are doc-
umented in Table 1 and Table 2 for the housing price and credit equation,
respectively.
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Table 1: Short run dynamics obtained by Autometrics for housing price equationa

Variable Coefficient t-value

Constant 1.23 6.78
∆d 0.61 3.85
∆pht−4 0.41 4.93
∆tt−3 0.05 2.55
∆rt−4 −0.38 2.06
∆Et 0.095 4.54
∆Et−1 0.096 4.40
∆Et−2 0.05 2.17

ecmph
t−1 −0.07 3.81

ecmd
t−1 −0.14 6.80

CSeasonalt −0.006 0.496
CSeasonalt−1 −0.007 0.65
CSeasonalt−2 −0.009 0.999
σ 0.0141
R2 0.82
Adj.R2 0.80
Diagnosticsb Test statistic Value [p-value]
AR 1-5 test: F (5, 73) = 0.4789 [0.7909]
ARCH 1-4 test: F (4, 83) = 0.4462 [0.7749]
Normality test: χ2(2) = 1.5603 [0.4583]
Hetero test: F (21, 69) = 1.3658 [0.1672]
Estimation Method OLS (Autometrics with p-value = 0.05)
Sample 1986q2-2008q4
a Absolute t-values are reported.
b See Doornik and Hendry (2009a).
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Table 2: Short run dynamics obtained from Autometrics for the credit equationa

Variable Coefficient t-value

Constant −0.73 10.6
∆pht 0.30 7.06
∆pht−4 −0.12 2.64
∆yt−2 −0.15 3.10
∆Et−1 −0.04 2.45
∆rt−3 −0.24 2.34

ecmph
t−1 0.09 10.8

CSeasonalt −0.004 1.16
CSeasonalt−1 −0.004 1.50
CSeasonalt−2 −0.01 4.07
σ 0.009
R2 0.72
Adj.R2 0.69
Diagnosticsb Test statistic Value [p-value]
AR 1-5 test: F (5, 76) = 1.4959 [0.2011]
ARCH 1-4 test: F (4, 83) = 0.7501 [0.5608]
Normality test: χ2(2) = 4.9864 [0.0826]
Hetero test: F (15, 75) = 0.8092 [0.6641]
Estimation Method OLS (Autometrics with p-value = 0.05)
Sample 1986q2-2008q4
a Absolute t-values are reported.
b See Doornik and Hendry (2009a).

The results in Table 1 and Table 2 reveal some differences as compared
to our preferred model. We note that both variables enter contemporane-
ously in both equations. Also, we observe that the income variable and the
expectations variable are both highly significant in the credit equation with
negative signs, which are not plausible a priori . Let us now turn to the two
equations when they are estimated simultaneously to take care of potential
endogeneity problems. Results are displayed in Table 3.
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Table 3: System estimation of the specifications obtained by Autometrics ( equation
by equation)a

Real housing prices Real household debt
Variable Coefficient t-value Coefficient t-value

Constant 1.00 3.78 −0.73 10.5
∆dt −0.26 0.49 − −
∆pht − − 0.32 5.50
∆pht−4 0.36 3.65 −0.13 2.57
∆yht−2 − − −0.15 3.05
∆Et 0.12 3.88 − −
∆Et−1 0.10 3.95 −0.04 2.48
∆Et−2 0.05 1.75 − −
∆rt−3 − − −0.24 2.37
∆rt−4 −0.51 2.36 −
∆tt−3 0.06 2.50 −
ECMph

t−1 −0.11 3.34 0.09 10.6
ECMd

t−1 −0.10 3.85 − −
Dummy, q1 −0.01 0.75 −0.005 1.26
Dummy, q2 −0.009 0.73 −0.004 1.55
Dummy, q3 −0.02 1.61 −0.01 4.07
Sargan χ2(43) = 40.323 [0.5881]
Log likelihood 567.99
σ 0.016 0.0086
Diagnosticsb Test statistic Value [p-value]
Vector SEM-AR 1-5 test: F (20, 138) = 0.7944[0.7168]
Vector Normality test: χ2(4) = 4.7544[0.3134]
Vector Hetero test: F (183, 81) = 1.0260[0.4557]
Estimation Method FIML
Sample 1986q2-2008q4
a Absolute t-values are reported.
b See Doornik and Hendry (2009b).

The credit equation remains almost unaltered, while the housing price
equation changes dramatically. First of all, the credit variable which is pos-
itive and highly significant in the single equation model has now changed
sign and is insignificant. Also, the loadings have changed. As a final check
of this model, we will explore how the implied dynamics of the system to a
permanent increase in real disposable income would be. We follow exactly
the same set up as in section 7.1 of the paper and the dynamic multipliers
are graphed in Figure 1.
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Figure 1: The alternative model: Dynamic multipliers of a 1 percent increase
in real disposable household income.

Based on the dynamic multipliers from this alternative model, we see
that it implies a negative response to household borrowing of an increase in
income in the short run, which seems unreasonable from an economic point
of view. Also, the credit effect on housing prices changes sign and turns
out insignificant, though it was positive and highly significant in the single
equation case. Furthermore, we observe relative big changes in the loadings
in the housing price equation. On this background we conclude that this
model is inferior to the one from the simultaneous model design reported in
Table 5 in Section 6 of the paper.
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4 Model without short run price homoegene-

ity

With reference to the forecasting exercise in Section 6 of the paper, this
section discusses a version of the model, where we de-restrict the assumption
of short run price homogeneity. To see whether the forecast failures for the
credit growth in 2010q1 and 2011q1 (confer Figure 2 in the paper) may be
due to the extremely cold winters, which lead to an extraordinary jump in
electricity prices in each of the two quarters, we re-estimated the model for
the case where short run price homogeneity is relaxed. As shown in the
paper (see Figure 3), this improves the forecasting accuracy of the model
– and in particular the credit forecasts. The estimation results underlying
those forecasts are reported in Table 4.

We started by including the current and first lag of the change in the
price deflator (∆pc) in both equations. However, these variables were only
significant in the credit equation, and were therefore excluded from the hous-
ing price equation. As seen, the inclusion of ∆pct and ∆pct−1 in the credit
equation only has minor effects on the estimated parameters of the hous-
ing price equation, while the estimates of the credit equation are somewhat
changed. That said, it seems to be changed for the better, since – as is ev-
ident from inspecting the table – derestricting short run price homogeneity
improves the fit of the credit equation. Furthermore, both the current and
lagged value are highly significant, and come with opposite signs. In fact,
we can not reject the hypothesis that the two coefficients are equal in abso-
lute value, i.e. suggesting that these terms are measuring a surprise inflation
(∆2pct = ∆pct − ∆pct−1). This gives additional credence to our conjecture
that the forecast failures in 2010q1 and 2011q1 are due to an unexpected
increase in electricity prices.
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Table 4: Short run dynamics a

Real housing prices Real household debt

Variable Coefficient t-value Coefficient t-value

Constant 1.617 7.90 0.023 4.83
∆dt 0.696 3.78 - -
∆dt−1 - - 0.560 7.68
∆dt−3 0.355 2.69 - -
∆pht−4 0.394 5.07 - -
∆yht−3 - - 0.084 1.99
∆Et 0.102 5.12 - -
∆Et−1 0.100 4.76 - -
∆Et−2 0.045 2.05 - -
∆Rt−4 - - -0.088 1.13
∆pct - - -0.720 9.25
∆pct−1 - - 0.528 5.89

ECMph
t−1 -0.172 7.86 - -

ECMd
t−1 -0.071 4.26 -0.025 4.63

Dummy, q1 0.025 3.87 -0.016 4.37
Dummy, q2 0.024 4.27 0.007 2.52
Dummy, q3 0.013 2.31 -0.019 7.36

Sargan χ2(48) = 44.68 [0.6099]
Log likelihood 603.68
σ 0.0137 0.0064

Diagnosticsb Test statistic Value [p-value]

Vector EGE-AR 1-5 test: F(20,138) 0.50 [0.96]
Vector Normality test: χ2(4) 36.17 [0.00]
Vector hetero test: F(195,69) 0.67 [0.98]

Estimation Method FIML
Sample 1986q2-2008q4 (T = 91)
a Absolute t-values are reported.
b See Doornik and Hendry (2009b).

5 Additional tables not included in the paper

Table 5 reports the tests for lag reduction of the VAR(5) we started out with
in Section 5 of the paper, while Table 6 reports ADF-tests for stationarity of
the residuals in the short run model (confer Table 5 in the paper).
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Table 5: Lag reduction for the exogenous variables in the unrestricted VAR a,

Lags log likelihood SC HQ AIC

5 869.13433 -14.194 -15.824 -16.926
4 866.47195 -14.433 -15.964 -16.999
3 860.07987 -14.590 -16.022 -16.991
2 857.56754 -14.832 -16.166 -17.067
1 854.16023 -15.055 -16.290 -17.124
0 845.28489 -15.157 -16.293 -17.061

Tests of lag reduction
5 to 4 F(6,112) = 0.55420 [0.7658]
5 to 3 F(12,148) = 0.96638 [0.4836]
5 to 2 F(18,158) = 0.83006 [0.6629]
5 to 1 F(24,163) = 0.81618 [0.7127]
5 to 0 F(30,165) = 1.0756 [0.3722]
4 to 3 F(6,116) = 1.4069 [0.2178]
4 to 2 F(12,153) = 0.98362 [0.4670]
4 to 1 F(18,164) = 0.91767 [0.5582]
4 to 0 F(24,168) = 1.2251 [0.2269]
3 to 2 F(6,120) = 0.55985 [0.7615]
3 to 1 F(12,159) = 0.66799 [0.7801]
3 to 0 F(18,170) = 1.1519 [0.3071]
2 to 1 F(6,124) = 0.78849 [0.5806]
2 to 0 F(12,164) = 1.4710 [0.1398]
1 to 0 F(6,128) = 2.1855[0.0485]∗

Estimation period: 1986q2-2008q4
a Endogenous variables: Real housing prices, real household debt and real disposable income.

Restricted variables: Real interest rate after tax, housing turnover, housing stock and a
linear trend. Unrestricted variables: Constant and seasonal dummies.
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